Fast Molecular Solvation Energetics and Forces Computation

نویسندگان

  • Chandrajit L. Bajaj
  • Wenqi Zhao
چکیده

The total free energy of a molecule includes the classical molecular mechanical energy (which is understood as the free energy in vacuum) and the solvation energy which is caused by the change of the environment of the molecule (solute) from vacuum to solvent. The solvation energy is important to the study of the inter-molecular interactions. In this paper we develop a fast surface-based generalized Born method to compute the electrostatic solvation energy along with the energy derivatives for the solvation forces. The most time-consuming computation is the evaluation of the surface integrals over an algebraic spline molecular surface (ASMS) and the fast computation is achieved by the use of the nonequispaced fast Fourier transform (NFFT) algorithm. The main results of this paper involve (a) an efficient sampling of quadrature points over the molecular surface by using nonlinear patches, (b) fast linear time estimation of energy and inter-molecular forces, (c) error analysis, and (d) efficient implementation combining fast pairwise summation and the continuum integration using nonlinear patches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Space Mesh Techniques in Molecular Theory of 3D Solvation

To provide fast computation of the 3D solvation in molecular liquids, we develop a new computational approach based on real-space mesh techniques. Basic aspects and peculiarities of this approach are presented within the framework of the integral equation theory of molecular liquids. Starting from the free energy functional of the 3D solvation problem, we reformulate the integral equations in t...

متن کامل

Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations

Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent-solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differe...

متن کامل

Urea–Water Solvation Forces on Prion Structures

Solvation forces are crucial determinants in the equilibrium between the folded and unfolded state of proteins. Particularly interesting are the solvent forces of denaturing solvent mixtures on folded and misfolded states of proteins involved in neurodegeneration. The C-terminal globular domain of the ovine prion protein (1UW3) and its analogue H2H3 in the α-rich and β-rich conformation were us...

متن کامل

Numerical solution of boundary-integral equations for molecular electrostatics.

Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The...

متن کامل

Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson-Boltzmann models

Continuum electrostatics methods have become increasingly popular due to their ability to provide approximate descriptions of solvation energies and forces without expensive sampling required by explicit solvent models. In particular, the Poisson-Boltzmann equation (PBE) provides electrostatic potentials, solvation energies, and forces by modeling the solvent as a featureless, dielectric materi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics

دوره 31 6  شماره 

صفحات  -

تاریخ انتشار 2010